

palmer.epfl.ch

PALMER: Perception-Action Loop with Memory for Long-Horizon Planning

Overview

- Goal: Agents that can **plan far into the future** solely using **their own sensory experience** (e.g., images from an onboard camera)
- Key Idea: Retrieve past trajectory segments from a replay buffer and restitch them into new paths
- How to retrieve trajectory segments?: by using reinforcement learning for representation learning
- How to restitch trajectory segments?: by combining learningbased representations with classical sampling-based planning

Representation Learning by RL

1) Estimate $Q(s_1, a, s_2)$

• $||z_1 - z_2||$ captures how many **timesteps it takes for the** optimal policy to go from one state to another

Retrieving Trajectories from the Replay-Buffer

Retrieved Trajectory

Start/Goal States

• Given a pair of start/goal states as a query, **retrieve a** trajectory segment from the replay-buffer whose endpoints **lie close to the start/goal pair** in representation space

Planning by Stitching Trajectory Segments

Results and Summary

Goal Distance (n imes

SPTM Success Ratio

SoRB Success Ratio

PALMER Success Rat

States from the Replay Buffer

Onur Beker, Mohammad Mohammadi, Amir Zamir

Repurpose **RRT / PRM** so that whenever an edge is created a trajectory is retrieved and stored in that edge, to build a planning graph • **Compute shortest paths** over this graph to **restitch the trajectories stored in edges**

Visual representations that are shaped by available actions (i.e., physical capabilities of an agent) and their consequences (i.e., state transitions)

• A learning-based planning method that is *scalable and sample-efficient*: • Can navigate between any two points in reconstructions of *large-scale real-world apartments* • This requires only **150k environment steps of training data collected from a random-walk** Does not assume a geometric model or a map of the environment, instead *plans directly over past sensory observations*

Δ)	8	16	24	32	36	44
(%)	0.28	0.01	0.0	0.0	0.0	0.0
(%)	0.42	0.0	0.0	0.0	0.0	0.0
io (%)	0.99	0.97	0.91	0.93	0.93	0.94

Goal State

Restitched Trajectory

Success Ratios for Visual Navigation in Habitat

Start State

Resulting planning graphs are *significantly more robust* to hallucinated shortcuts compared to baselines, as creating an edge between two states *requires there to be an actual trajectory segment* in the replay-buffer that connects them

Planning Graphs

Latent Distance Goal Distance $(n \times \frac{\Delta}{10})$ **Q-Values** Goal Distance $(n \times \frac{\Delta}{10})$ Action Entropy 1.25 1.20 1.15 1.10 0.90 0.85 6 Goal Distance $(n \times \frac{\Delta}{10})$ **Time Predictions**

4

Goal Distance $(n \times \frac{\Delta}{10})$

Comparing Distance Metrics