
PALMER: Perception-Action Loop with Memory
for Long-Horizon Planning

Onur Beker Mohammad Mohammadi Amir Zamir

Swiss Federal Institute of Technology (EPFL)

Abstract

To achieve autonomy in a priori unknown real-world scenarios, agents should be
able to: i) act from high-dimensional sensory observations (e.g., images), ii) learn
from past experience to adapt and improve, and iii) be capable of long horizon
planning. Classical planning algorithms (e.g. PRM, RRT) are proficient at handling
long-horizon planning. Deep learning based methods in turn can provide the nec-
essary representations to address the others, by modeling statistical contingencies
between observations. In this direction, we introduce a general-purpose planning
algorithm called PALMER that combines classical sampling-based planning algo-
rithms with learning-based perceptual representations. For training these perceptual
representations, we combine Q-learning with contrastive representation learning
to create a latent space where the distance between the embeddings of two states
captures how easily an optimal policy can traverse between them. For planning with
these perceptual representations, we re-purpose classical sampling-based planning
algorithms to retrieve previously observed trajectory segments from a replay buffer
and restitch them into approximately optimal paths that connect any given pair of
start and goal states. This creates a tight feedback loop between representation
learning, memory, reinforcement learning, and sampling-based planning. The end
result is an experiential framework for long-horizon planning that is significantly
more robust and sample efficient compared to existing methods.

1 Introduction

Animals and humans operate on high-dimensional stimuli (e.g., vision) to achieve diverse and ever-
changing goals necessary for their survival [1, 2, 3, 4, 5]. Learning through trial-and-error plays a
fundamental role in this [6, 7, 8, 9, 10, 5]. Even in simplest environments, a brute-force approach
to trial-and-error by trying every possible action for achieving every possible goal is intractable.
The complexity of this search motivates memory-based mechanisms for compositional thinking.
Examples of such mechanisms include : i) remembering relevant segments of past experience, ii)
recomposing them in new counterfactual ways to form plans, and iii) executing such plans as part of
a targeted search strategy. Such mechanisms for recycling past successful behavior can significantly
accelerate trial-and-error compared to uniformly sampling all possible actions. This is because the
same behavior (i.e., sequence of actions) can remain valid for different goals and in different contexts,
due to the inherent compositional structure of real-world goals as well as the commonality of the
physical laws that govern real-world environments.

What principles can allow for memory mechanisms to remember and recompose bits of experience?
The concept of dynamic programming (DP) is directly related to this discussion, as it greatly reduces
the computational cost of trial-and-error by employing the principle of optimality [11]. This principle
can be colloquially stated as treating new and complex problems as a recomposition of old and simpler
sub-problems that were already solved before. Recent work [12, 13, 14] employs this perspective to

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Figure 1: Top: Given a start-goal image pair, PALMER plans a path between them by concatenating the
endpoints of past trajectory segments retrieved from a provided replay buffer. This is enabled by a state
embedding function fϕ that can identify close-by states, and results in robust long-horizon planning. Bottom:
To achieve this : i) it uses offline Q-learning to obtain local reachability estimates between states, ii) uses these
Q-values for representation learning to train fϕ, iii) uses fϕ to plan over the replay buffer, iv) executes these
plans, v) evaluates the resulting trajectories and inserts them back into the replay buffer to improve its contents.

build hierarchical reinforcement learning (RL) algorithms for goal-reaching tasks. Such methods set
edges between states using a distance regression model to build a planning graph, perform shortest
path computations over it using DP-based graph search, and follow the resulting shortest paths with a
learning-based local policy. Our paper builds upon this line of work.

Contribution: We describe a long-horizon planning method that directly operates on high dimensional
sensory input observable by an agent on its own (e.g., images from an onboard camera). Our
method combines classical sampling-based planning algorithms with learning-based perceptual
representations, to retrieve and recompose previously observed sequences of state transitions in a
replay buffer. This is enabled by a two-step process. First, we learn a latent space where the distance
between two states captures how many timesteps it takes for an optimal policy to go from one to the
other. To achieve this, we use goal-conditioned Q-values learned through offline hindsight relabelling
[15] for contrastive representation learning. Second, we threshold this learned latent distance metric to
define a neighborhood criterion between states. We then define sampling-based planning algorithms
that search over the replay buffer [12] to retrieve and stitch together trajectory segments (i.e., past
sequences of observed transitions) whose endpoints are neighboring states. This trajectory stitching
approach allows for creating planning graphs to connect any pair of start and goal states that were
observed before (as depicted in Fig.1). Our approach operates on offline unlabeled data, and can
therefore be combined with any exploration method to populate the replay buffer. Our experiments
implement an image-based navigation policy in simulation, using an offline replay buffer populated
with uniform random-walk exploration data.

2 Perception-Action Loop with Memory Retrieval1

Nomenclature: An environment is represented as a tuple ⟨S,A, penv⟩, where S and A are the state
and action spaces, and penv(s

′|s, a) is the Markovian transition dynamics. A trajectory τ ∈ T is
any sequence of states and actions. τ0 , τ−1 , τi denote the first, last, and i’th states in τ respectively.
The length of a trajectory in terms of timesteps is denoted as len(τ), and concatenation of two

1Most sub-sections have a corresponding section in the supplementary for further elaboration.

2

Figure 2: An overview of the functions, inputs, and losses used in our method (see Sec.2.2 for details). We aim
to train a perceptual encoder fϕ with two properties: i) representations of two states should be close if they were
observed to be easily reachable from each other within a low number of timesteps, ii) the representation of a state
should capture a minimal sufficient statistic to inform an agent about the actions needed to reach nearby states.

trajectories is denoted as τcat = τ1 ◦ τ2. We assume an additive reward functionR : T → R where
R(τ) =

∑
(s,a)∈τ r(s, a). We call a finite set of trajectoriesM = {τi} a replay buffer.

2.1 Perceptual Representations that Capture Local Reachability

A key component of our framework is a perceptual encoder fϕ(s) : S → Rd that maps states into a
representation space where L2 distance dϕ(st, sg) := ∥fϕ(st)− fϕ(sg)∥ captures local reachability
(i.e., how many timesteps it takes for the optimal policy to go from one state to another). To discuss
this more rigorously, we follow the work of [16, 12] and define a goal-conditioned reward function
r(st, a, st+1, sg) = −1st+1 ̸=sg that returns −1 for all steps before reaching a goal. This means goal-
conditioned Q-values [16, 17] for the optimal policy correspond to negative shortest-path distances
(i.e., maxaQ(st, a, sg) = V (si, sj) = −len(τsp)). We can then define a symmetric distance metric
between states as dQ(sc, sg) := max(−V (sc, sg),−V (sg, sc)). This in turn corresponds to the
two-way consistency criterion proposed in [13]. What we want from fϕ(s) is for dϕ(sc, sg) and
dQ(sc, sg) to roughly correlate.

2.2 Representation Learning via Reinforcement Learning

Any perceptual encoder fϕ whose latent representations satisfy the local reachability property defined
in Sec.2.1 can be used to implement the nearest neighbor retrieval and trajectory stitching mechanisms
for the upcoming sections 2.3 and 2.4. This section discusses one possible way to obtain such a
perceptual encoder, by using goal-conditioned Q-values for contrastive representation learning.

We propose a model (depicted in Fig.2) that includes the following standard components from
the literature: i) z = fϕ(s), projecting a state into a latent representation; ii) pfwd(z

′
t+1 | zt, at),

modelling the transition distribution induced by penv(s
′|s, a) over the latent space z = fϕ(s), as

discussed in [18, 19]; iii) πinv(a
′
t | zt, zg), defining a distribution of actions to reach a goal state,

as discussed in [18, 19, 14]; iv) pt(T ′ | zt, zg), modelling the distribution of timesteps necessary
to reach a goal state, as discussed in [20]; v) Q(st, at, sg), a Q-value function that provides local
reachability estimates between pairs of states, as discussed in [12, 16].

Following [12, 16], we train Q(st, at, sg) over an offline replay bufferM, using hindsight relabelling
[15, 16] with a reward function r(st, a, st+1, sg) = −1st+1 ̸=sg . After training Q(st, at, sg) in
isolation, we freeze its parameters and use it to define a contrastive loss function [21] LQ as explained
below. We then train the remaining components using the same replay bufferM. We randomly
sample a transition (st, at, st+1) and a time difference T , and set the goal state as sg := st+T , as in
hindsight relabelling. We then minimize the following losses:

• LQ(st, sg) = lhinge(dϕ(st, sg) − dp) 1dQ(st,sg)≤cQ + lhinge(dp − dϕ(st, sg)) 1dQ(st,sg)≥cQ ,
where lhinge is the hinge loss [22]. This contrastive loss dictates that perceptual representations
should be close together (i.e., dϕ(st, sg) ≤ dp holds) if and only if two states are close to each
other in terms of reachability (i.e., dQ(st, sg) ≤ cQ holds). dp and cQ are hyperparameters.

3

• LT (T
′, T), Linv(a

′
t, at), and Lfwd(z

′
t+1, zt+1) are MSE and cross-entropy losses [19, 20]. LT

and Linv dictate that perceptual representations should capture enough information to know when
and how an agent can reach from one state to another, while Lfwd dictates that they should capture
only a minimal-sufficient statistic for doing so ([19] presents a more elaborate discussion).

2.3 Perceptual Experience Retrieval (PER)

Given a perceptual encoder fϕ that captures local reachability, we go over all states si ∈ M in
the replay buffer and compute their projections zi = fϕ(si), which are stored alongside the states
themselves. We then employ zi to implement two retrieval mechanisms from the replay buffer: i)
retrieving neighboring states, and ii) retrieving neighboring trajectories.

i) Retrieving Neighboring States: Given a query state sc and radius dp (i.e., the same one used in the
contrastive loss LQ in Sec.2.2), retrieving neighboring states amounts to computing the setNdp

(sc) =
{sn | dϕ(sc, sn) ≤ dp}, which can be achieved by a straightforward L2 distance computation and
thresholding. The number of neighbors |Ndp(sc)| of a query state sc is an approximate measure of
how many times the agent has visited around sc, which also makes it a good visitation-count that is
applicable to both discrete and continuous state spaces.

ii) Retrieving Neighboring Trajectories: Given a starting state sc and a goal state sg, we can search
the replay buffer for the highest reward trajectory segment τ that starts from a state τ0 in Ndp(sc)
and ends in a state τ−1 in Ndp

(sg). This corresponds to the following optimization problem:

τM(sc,sg) := argmax
τ∈M

R(τ) s.t. τ0 ∈ Ndp
(sc) , τ−1 ∈ Ndp

(sg) (1)

To find τM(sc,sg), we first select all state pairs (si, sj) ∈ Ndp(sc) × Ndp(sg). We then take all
sequences of transitions τij = {si, ai, si+1, ..., sj−1, aj−i, sj} that start from si, end at sj , and
are below a length threshold in terms of timesteps. We sort them based on R(τij), and return the
trajectory with the highest reward. We call this trajectory retrieval process ‘Perceptual Experience
Retrieval’ (PER). We use PER only to retrieve short trajectory segments between close-by states
(sc, sg) (i.e., hence the length threshold on τij). These are then stitched together into long global
trajectories using the planning algorithms defined in the next section.

2.4 Long-Horizon Planning Through Stitching Trajectory Segments

This section discusses how PER can be employed for long-horizon planning. Classical sampling-
based planning algorithms such as RRT [23] or PRM [24] connect points sampled from obstacle-free
space with line segments in order to build a planning graph. We instead reimagine them as memory
search mechanisms by altering their subroutines so that whenever an edge is created, a trajectory is
retrieved from the replay buffer through PER (eq.1) and stored in that edge. Our new definitions for
these subroutines directly mirror the original ones given in [25]:
1) Sampling: Sampling originally returns a point from obstacle free space. We instead return a state
sc from the replay bufferM using any distribution (e.g., uniform, or based on visitation-counts).
2) Lines and Their Cost: The equivalent of drawing a line segment in our framework is retrieving
a trajectory τM(sc,sg), and its length and cost are len(τM(sc,sg)) and −R(τM(sc,sg)) respectively.
3) Nearest State and Neighborhood Queries: Given a query point si, these subroutines return the
closest point or a neighborhood of points within a distance, among a set of vertices V = {sj}. We
preserve these definitions, and only replace the metric from euclidean distance to len(τM(sc,sg)).

Nearest(V, sg) := argmin
sc∈V

len(τM(sc,sg))

Near(V, sg, r) := {sc ∈ V | len(τM(sc,sg)) ≤ r}
4) Collision Tests: Collision tests originally prevent the sampling and line drawing subroutines from
intersecting obstacles. Since we are planning in retrospect, any such undesirable event can be handled
during PER by adjusting the reward function (i.e., if τ has such an event, this reflects onR(τ)).
Using these subroutines directly in-place of their originals, we reimplement experiential equivalents
of PRM, RRT, and RRT*, which we call R-PRM, R-RRT, R-RRT*. We denote the resulting planned
trajectory as τM*(sc,sg). Algorithms 1, 2 describe R-PRM as an example, and the supplementary
contains descriptions for R-RRT, R-RRT*.

4

Algorithm 1 R-PRM (Roadmap Construction)

1: Input: fϕ,M
2: V ← {SampleFreei}i=1,...,num_vertices; E ← ∅ ▷ Initialize vertices and edges
3: for each si ∈ V do
4: U ← Near(V, si, r) \ {si}
5: for each sj ∈ U do ▷ Place PER trajectories in edges
6: E ← E ∪ {(si, sj) : τedge = τM(si,sj), dedge = −R(τM(si,sj))}

return G = (V,E)

Algorithm 2 R-PRM (Trajectory Restitching Given the Constructed Roadmap)

1: Input: sc, sg, G = (V,E),R(τ), fϕ,M
2: for each si ∈ V do ▷ Insert sc and sg into the PRM graph
3: if len(τM(sc,si)) ≤ r then ▷ Place PER trajectories in edges
4: E ← E ∪ {(sc, si) : τedge = τM(sc,si), dedge = −R(τM(sc,si))}
5: if len(τM(si,sg)) ≤ r then
6: E ← E ∪ {(si, sg) : τedge = τM(si,sg), dedge = −R(τM(si,sg))}

7: τstitched ← ∅
8: {sj} ← ShortestPath(sc, sg, G,R(τ)) ▷ Trajectory stitching by dynamic programming
9: for 0 < i < |{sj}| do ▷ Concatenate PER trajectories along the shortest path

10: τstitched ← τstitched ◦ τM(si−1,si)

return τM*(sc,sg) = τstitched

We note two things about our proposed planning algorithms. First, they can optimize any general
reward function R. As the number of sampled vertices increases, R(τM*(sc,sg)) gets optimized
through dynamic programming (i.e., by minimizing the Bellman error between vertices of the roadmap
G), therefore employing the same mechanism as classical sampling-based planning algorithms [25].
Second, they operate on an offline dataset of unlabeled transitions which solely consists of high-
dimensional on-board sensory data (e.g. images), without assuming any auxiliary instrumentation
in the environment or oracle information that cannot be sensed by the agent on its own. They
therefore aim to relax the assumptions classical sampling-based planning methods make about what
constitutes a model (e.g., replacing a geometric environment model with sensory experience) and
what constitutes a state (e.g., enabling search and planning directly over images).

2.5 Refining Memory Contents via Forming and Executing Plans

We iteratively form and execute τM*(sc,sg), and whenever execution is successful, we insert the
resulting new trajectories back intoM. We note that these new trajectories are not exactly the same
as τM*(sc,sg), because τM*(sc,sg) contains approximate mismatches between the endpoints of its
stitched trajectory segments due to nearest neighbor retrieval. Forming and executing plans this way
creates the following perception-action loop: i) M with refined contents is used to train a more
accurate Q(st, a, sg), ii) a more accurate Q(st, a, sg) creates a more accurate distance metric dϕ, iii)
a better dϕ generates better τM*(sc,sg), iv) better τM*(sc,sg) result in higher frequencies of successful
execution to further refineM (see the supplementary for an algorithmic description).

3 Related work

Self-supervised goal reaching: Our approach is closely related to goal-reaching methods that combine
learning-based distance-regression with graph search, particularly Semi-parametric Topological
Memory (SPTM) [14] and Search on the Replay Buffer (SoRB) [12], which we compare to in our
experiments. The key difference of our approach is that when setting the edges of the planning
graph, it retrieves transitions that actually happened rather than relying on learned distance regression.
This brings two main benefits. First is robustness. Local reachability estimates are susceptible
to overestimation when evaluated between pairs of states that are far apart or unreachable. This

5

Figure 3: A comparison between perceptual distances dϕ and other suitable metrics from Sec.2.2. While
all of these metrics are reasonably monotonic with physical reachability (i.e., goal distance), only perceptual
distances dϕ do not saturate when evaluated locally (i.e., for close by goals). In addition, the ratio between the
variance of dϕ and the slope of its mean is much smaller compared to other sensible metrics (i.e., dϕ has a high
signal-to-noise ratio). This means that perceptual distances can implement a more accurate nearest-neighbor
criterion for perceptual experience retrieval and trajectory stitching, compared to the other metrics.

is because such states rarely occur together and are therefore out of distribution for the distance
regression model. This creates ‘hallucinated’ shortcuts in the planning graph that corrupt shortest
path queries [12, 13]. To address this, [14] employs temporally consistent localization and adaptive
waypoint selection, while [12] employs distributional Q-learning and an ensemble of Q-functions.
In our approach, eq.1 naturally addresses this problem, since it requires an actual short trajectory in
the dataset approximately connecting two states before marking them as close. The second benefit
of our approach is that it can optimize general reward functions. This is because it decouples the
reachability metric len(τ) (used in nearest neighbor queries and as a threshold to create edges) from
the downstream task rewardR(τ) (used to set edge distances), unlike previous work.
Image-Based Navigation: [26, 27, 28] present learning-based navigation systems that incrementally
build roadmaps through online operation. Our approach has two main differences: i) it builds a
roadmap entirely using raw offline data, therefore allowing applications like multi-robot learning
without additional loop-closure mechanisms to fuse graphs from multiple agents, ii) our approach
can optimize general reward functions, therefore it is not limited to navigation.
Robot Motion Planning: A common approach to motion planning is to first run a sampling-based
planning algorithm [29, 25], and then refine the result through trajectory optimization [30, 31, 32] to
satisfy constraints [33, 34, 35]. An important bottleneck is that sampling-based planning algorithms
require a precomputed map of the environment, and our approach extends such algorithms in a way
that relaxes this requirement by replacing a precomputed map with raw exploration experience.
SLAM and Geometric Maps: SLAM based methods [36] can autonomously construct high-fidelity
geometric maps [37, 38], therefore alleviating the bottleneck of precomputing environment maps. The
downside of such approaches is that they can abstract away useful physical and semantic affordances.
For example, a purely geometric map cannot plan a path through a traversable field of tall-grass,
while our approach can learn such affordances as long as they are represented in past experiences.

4 Experiments2

Setup: Our experiments are performed in ViZDoom [39], Habitat [40], and the Maze2D benchmark
[41]. The VizDoom environment consists of a clover shaped maze. States solely consist of four images
INorth/East/South/West that form a panorama (i.e., 4×3×160×120 dimensions), and actions move
the agent North/South/East/West by a fixed distance ∆. The maze contains many long-thin column-
like obstructions (shown as dots in visualizations). Habitat experiments contain demonstrations on two
large-scale scans of real-world apartments: i) Roxboro, with a total area of 62 m2, and ii) Annawan,
which has a total-area of 75m2. States consist of a single 150 FOV image (i.e., 3 × 256 × 256
dimensions). There are 3 actions: {turn_left_30_deg, turn_right_30_deg,move_forward_∆}.
Maze2D is a continuous control task, where states consist of the 2D position and velocity of a point
mass, and actions correspond to 2D accelerations. In all environments, an offline training dataset
is collected by a uniform random walk exploring the environment. For VizDoom and Habitat, this
offline training dataset consists of only 300k and 150k timesteps respectively, while for Maze2D
there are 1e6 timesteps. Supplementary material contains further details.

2All experiments have a corresponding section in the supplementary providing further implementation details.

6

Figure 4: Comparisons of our local policy πM and global policy πM∗ with SPTM and SoRB. πM performs well
because it avoids getting stuck (as such events are filtered by eq.1), while πM∗ performs well because it builds
robust roadmaps without hallucinated shortcuts; therefore avoiding the main failure modes of the baselines.

Figure 5: At the core of PALMER is a process called perceptual experience retrieval (PER). Given a query
pair of current-goal states, PER searches the replay buffer to retrieve the highest scoring trajectory τM(st,sg)

whose first and last states are close to the query pair according to the perceptual distance dϕ. Left, Middle:
Visualizations of τM(st,sg) retrieved using PER and nearest neighbor states Ndp(st) retrieved using dϕ. Right:
Setting edges of a roadmap using len(τM(st,sg)), compared with distance estimates used in SORB and DDL
[20]. We found that distance estimates from baselines are prone to setting false edges that cross map boundaries.

4.1 Experiments in Vizdoom

Validating Perceptual Representations: Fig.3 shows that dϕ(st, sg) obtained from our model captures
a suitable notion of local reachability. Fig.5 in turn shows that retrieving nearest neighbor states
Ndp

(st) fromM using dϕ (i.e., NN retrieval) returns physically close states.

Validating Perceptual Experience Retrieval (PER): Fig.5 shows visualizations of trajectories re-
trieved with PER. We implement a retrieval policy πM that computes τM(st,sg) through eq.1 at
each timestep t and executes argmaxa Q(st, a, τM(st,sg),s,1), therefore forming a model predictive
control (MPC) loop. We evaluate πM in an image-based navigation task where start/goal images
are sampled randomly to have an euclidean distance n × ∆ in between, and a trial is considered
successful if the agent can get within ∆ proximity of the goal position within 4× n time-steps. We
use the local policies from SORB [12] and SPTM [14] as baselines. Fig.4 shows the results. The
main mode of failure for both SPTM and SORB local policies is that they get stuck in column-like
structures. πM avoids this, since eq.1 retrieves collision free τM(st,sg).

Robust Distances: PER also helps avoid hallucinations in local distance regression. Fig.5 illustrates
this point by setting edges between sampled states by thresholding len(τM(st,sg)), where methods of
[12, 20] are used as baselines. It can be seen that edges set by len(τM(sc,sg)) are more robust.

Proposed Planning Algorithms: Fig.6 shows visualizations of planning graphs and τM*(sc,sg) pro-
duced by R-PRM, R-RRT, and R-RRT*. It can be seen that R-PRM doesn’t contain any hallucinated
edges, while R-RRT and R-RRT* maintain the visual characteristics of their classical counterparts
(i.e., R-RRT has jagged branches with uniform coverage, while R-RRT* has straight branches
shooting out from the root). We implement an MPC policy πM* that replans at each timestep t
using Algorithm 2 to return τM*(st,sg), and executes argmaxa Q(st, a, τM*(st,sg),s,1). We again

7

Figure 6: We repurpose conventional sampling-based planning algorithms as memory search mechanisms, by
altering their graph building subroutines so that whenever an edge is created a trajectory τM(st,sg) is retrieved
through PER and stored in that edge. We visualize the resulting planning graphs produced by our proposed
algorithms R-PRM, R-RRT, R-RRT*.

Figure 7: Memory Refinement: In PALMER, a policy has three groups of parameters: Q(st, at, sg), fϕ, and the
contents of M. Iteratively forming plans through PER and executing them creates a feedback loop between
these components, where: i) actions inform perception during the training of fϕ, ii) perception facilitates actions
through the formation plans, and iii) memory serves as the medium for this reciprocal interaction. As a result,
trajectories produced by explicit planning are gradually internalized as implicit behavior encoded in the model
parameters. This leads to: Q-values propagating further into distant goals (Left), memory contents getting closer
to optimal (Middle), and performances of local policies showing significant improvement (Right).

use SORB [12] and SPTM [14] as baselines.3 Fig.4 shows the results. In addition to the local policy
getting stuck, a new mode of failure for both baselines is that false distance estimates throw-off
graph search by setting hallucinated shortcuts. A new baseline is πmpc, which extends the SPTM
local policy by using pfwd and pt from Sec.2.2 to implement an MPC loop with n-step look-ahead.
πmpc avoids getting stuck in columns thanks to n-step lookahead, but still isn’t sufficient for global
navigation as the accuracy of simulated rollouts from pfwd decreases with the number of timesteps.

Refining Memory Contents: We refine the contents of M by iteratively generating and executing
τM*(sc,sg). We then retrain all model components only on the resulting new data that is equal in size
to the initial unrefinedM. Fig.7 shows the results. When πM, and argmaxaQ(at, a, sg) are used as
policies, their success ratio increases significantly if they are trained on the optimizedM. Q-value
estimates trained on the optimizedM also propagate better to goals further away. The scaling of
len(τM(sc,sg)) with goal-distance changes from an exponential trend to an approximately linear one,
due to the inclusion of transitions from successfully executed τM*(sc,sg). These results highlight that
refining memory contents improves the quality of future plans.

4.2 Experiments in Habitat

As shown in Fig.8, we find that our method allows image-based navigation in this new domain
with significantly different visuals and layouts (i.e., real-world apartments), action space (i.e., turn-
left, turn-right, go-forward), and state space (i.e., single 256 × 256 RGB images with 150 FOV).
Perhaps more surprisingly, we find that training fϕ only on exploration data from a single apartment
generalizes substantially well to any unseen apartment, which directly allows perceptual experience
retrieval and trajectory stitching when provided with a corresponding replay buffer. For a quantitative
evaluation, we randomly pick two apartments, named Roxbox and Annawan. In both apartments, we
collect an exploration dataset using a uniform random walk sequence of only 150k timesteps. We

3For a comparison without confounders, we train SoRB with DDQN [42] rather than distributional Q-learning
[43], and we do not employ temporally consistent localization for SPTM, as such fixes are equally applicable to
our method and orthogonal to the discussion. The supplementary provides further elaboration.

8

Figure 8: We evaluate our R-PRM based policy πM∗ in the Habitat simulator for image-based navigation. Top
Left: Success ratios in training and test apartments. Top Right: Number of timesteps until reaching the goal.
("Habitat seen" refers to the training apartment Roxbox, while "habitat unseen" refers to the test apartment
Annawan. Bottom: We found that training the perception model fϕ on a single apartment generalizes sufficiently
well to allow perceptual experience retrieval and trajectory stitching in any unseen apartment.

train the model components solely on data from Roxbox. We then use them to implement our πM∗

policy from Sec.4.1, which we then evaluate on both apartments. For n ∈ {8, 16, 24, 32, 36, 44}, we
randomly sample 100 pairs of start and goal-states in a way that the geodesic distance between them
lies within n×∆ and (n+ 8)×∆ through rejection sampling. A policy is considered successful if
it can get within 2×∆ proximity of the goal-state. We do not plot the SPTM and SORB baselines,
because we found that the models πinv(a|st, sg) and argmaxa Q(st, a, sg) that they use as local
navigation policies achieved almost zero percent success rate in reaching local goals beyond ∼ 2×∆
distance. We empirically observed that most of the time these policies get stuck in repetitive rotational
motions without moving forward. This is most likely due to the difficulty of offline RL training with
hindsight relabelling over random-walk data obtained with a much more challenging non-cartesian
action space {turn_left_30_deg, turn_right_30_deg,move_forward_∆}.

4.3 Experiments in Maze2D

SAC SAC-off BEAR AWR BCQ CQL IQL Diffuser PALMER
maze2d-umaze 110.4 145.6 28.6 25.2 41.5 31.7 89.6 182.1 131.76

maze2d-medium 69.5 82.0 89.8 33.2 35.0 26.4 105.2 332.9 416.28
maze2d-large 14.1 1.5 19.0 70.1 23.2 40 159.9 328.1 361

Table 1: Total rewards on the Maze2D benchmark, which is a continuous control task that requires long-horizon
planning. Our R-PRM based πM∗ policy achieves comparatively strong performance.

To test our method on a continuous control task, we perform additional experiments on the Maze2D
benchmark. As shown in Table.1, we find that the same πM∗ policy from sections 4.1 and 4.2
achieves strong performance, and can solve mazes of all three complexities.

5 Discussion and Future Directions

Is PALMER less expressive than standard deep Q-learning: Two important premises of deep Q-
learning [44, 34] are: i) minimizing Bellman error through temporal-difference (TD) updates can
restitch observed transitions in new optimal ways [41, 45], ii) a neural network can learn to extrapolate

9

Q-values to unobserved but close-by states in high-dimensional spaces (e.g. images) [46]. Both
arguments are equally valid for our approach, since it can: i) restitch transitions at arbitrary resolu-
tions (i.e., anywhere from one-step transitions to multi-step trajectories) by virtue of sampling-based
planning, ii) group together close-by states through dϕ. Therefore, PALMER is an RL algorithm
that: i) optimizes Bellman error through sampling-based optimal planning rather than gradient-based
TD-updates [46], ii) performs extrapolation between states using a perceptual-backbone fϕ rather
than a deep Q-network, and iii) replaces the greedy-policy argmaxa Q(st, a, sg) and value estimate
maxa Q(st, a, sg) with argmaxa Q(st, a, τM*(st,sg),s,1) andR(τM*(sc,sg)) respectively. The key
benefits of these alterations come into play when st and sg are far apart, and these benefits are: i)
the PER mechanism in eq.1 that prevents hallucinations in Q(st, a, sg), ii) global propagation of
value estimates by virtue of employing sampling-based planning methods, which are known to be
particularly proficient at searching high-dimensional state spaces across long-horizons [35, 29].
Combining PALMER with standard deep Q-learning: Our approach can also be flexibly combined
with any traditional Q-learning method [46, 47, 48], by using our proposed planning algo-
rithms (Sec.2.4) as experience replay methods [49]. This alternative approach stitches together
τM*(sc,sg) during training, and perform backwards TD-updates over this trajectory starting from
sg = τM*(sc,sg),s,−1 and ending at sc = τM*(sc,sg),s,0. As suggested by Fig.7, this can al-
low value estimates Q(st, a, sg) to propagate more globally. Our proof-of-concept experiments
identify this as a promising direction, and we leave a further extensive evaluation to future work.
Connections to contingency learning: Contingency learning refers to the acquisition of knowledge
of statistical correlations between percepts [50, 3, 51]. Following this definition, PALMER can be
interpreted as a contingency learning framework, as the latent distance metric dϕ captures statisti-
cally how likely two states are to be observed in close temporal proximity. The knowledge of these
statistical contingencies between states is then used for long-horizon decision making through the
proposed perceptual experience retrieval and planning mechanisms.

6 Conclusion and Limitations

We presented PALMER, a long-horizon planning method that combines learning-based perceptual
representations with classical sampling-based planning algorithms. Given a goal state sg and reward
function R, our method searches the contents of an offline replay-buffer M to stitch together a
sequence of transitions τM*(sc,sg) = {s1, a1, s2, ...} that reaches sg while maximizing R. This
results in an experiential framework for long-horizon planning that is significantly more robust and
sample efficient compared to baselines.

Our experiments show that PALMER can successfully solve long-horizon planning tasks from
continuous high-dimensional inputs. In particular, we have shown that given an offline dataset of
only 150k transitions (i.e., compared to sample complexities around the orders of magnitude 1e6-1e7
common in RL) obtained from an entirely uniform random-walk (i.e., which is significantly less
structured compared to on-policy rollouts), it allows image-based navigation between any two points
in large-scale scans of real-world apartments.

We believe that our memory-based planning perspective highlights a number of interesting questions
for future research. First, which transitions should be kept in the replay bufferM, and which ones
should be discarded?M cannot be infinitely expanded after deployment, and it is critical to distill
away redundancies between stored experiences. Second, when the environment undergoes a change,
which transitions in the replay buffer remain valid and can still be used for planning, and which ones
become invalid? A mechanism that can answer this question can allow quick and sample-efficient
adaptation to environmental changes. Third, how can we extend fϕ to allow more abstract associations
and functional equivariances between states? This can improve generalization by defining a more
flexible notion of experience retrieval that can recycle past behavior in new contexts and for new
tasks. We leave these questions to future work.

References
[1] S. E. Palmer, Vision science: Photons to phenomenology. MIT press, 1999.

[2] J. J. Gibson, The ecological approach to visual perception: classic edition. Psychology Press,
2014.

10

[3] J. K. O’regan and A. Noë, “A sensorimotor account of vision and visual consciousness,” Behav-
ioral and brain sciences, vol. 24, no. 5, pp. 939–973, 2001.

[4] J. D. Co-Reyes, S. Sanjeev, G. Berseth, A. Gupta, and S. Levine, “Ecological reinforcement
learning,” arXiv preprint arXiv:2006.12478, 2020.

[5] D. Silver, S. Singh, D. Precup, and R. S. Sutton, “Reward is enough,” Artificial Intelligence, vol.
299, p. 103535, 2021.

[6] E. L. Thorndike, “Animal intelligence: An experimental study of the associative processes in
animals.” The Psychological Review: Monograph Supplements, vol. 2, no. 4, p. i, 1898.

[7] ——, “The law of effect,” The American journal of psychology, vol. 39, no. 1/4, pp. 212–222,
1927.

[8] D. T. Campbell, “Perception as substitute trial and error.” Psychological review, vol. 63, no. 5, p.
330, 1956.

[9] R. J. Herrnstein, “On the law of effect,” Journal of the experimental analysis of behavior, vol. 13,
no. 2, pp. 243–266, 1970.

[10] S. D. Whitehead and D. H. Ballard, “Learning to perceive and act by trial and error,” Machine
Learning, vol. 7, no. 1, pp. 45–83, 1991.

[11] D. Bertsekas, Dynamic programming and optimal control: Volume I. Athena scientific, 2012,
vol. 1.

[12] B. Eysenbach, R. R. Salakhutdinov, and S. Levine, “Search on the replay buffer: Bridging
planning and reinforcement learning,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[13] S. Emmons, A. Jain, M. Laskin, T. Kurutach, P. Abbeel, and D. Pathak, “Sparse graphical
memory for robust planning,” Advances in Neural Information Processing Systems, vol. 33, pp.
5251–5262, 2020.

[14] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric topological memory for naviga-
tion,” arXiv preprint arXiv:1803.00653, 2018.

[15] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. To-
bin, O. Pieter Abbeel, and W. Zaremba, “Hindsight experience replay,” Advances in neural
information processing systems, vol. 30, 2017.

[16] L. P. Kaelbling, “Learning to achieve goals,” in IJCAI, vol. 2. Citeseer, 1993, pp. 1094–8.

[17] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value function approximators,” in
International conference on machine learning. PMLR, 2015, pp. 1312–1320.

[18] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning to poke by poking:
Experiential learning of intuitive physics,” Advances in neural information processing systems,
vol. 29, 2016.

[19] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven exploration by self-
supervised prediction,” in International conference on machine learning. PMLR, 2017, pp.
2778–2787.

[20] K. Hartikainen, X. Geng, T. Haarnoja, and S. Levine, “Dynamical distance learning for semi-
supervised and unsupervised skill discovery,” arXiv preprint arXiv:1907.08225, 2019.

[21] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discriminatively, with
application to face verification,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 1. IEEE, 2005, pp. 539–546.

[22] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

11

[23] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for path planning.”

[24] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for
path planning in high-dimensional configuration spaces,” IEEE transactions on Robotics and
Automation, vol. 12, no. 4, pp. 566–580, 1996.

[25] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The
international journal of robotics research, vol. 30, no. 7, pp. 846–894, 2011.

[26] D. Shah, B. Eysenbach, N. Rhinehart, and S. Levine, “Recon: Rapid exploration for open-world
navigation with latent goal models,” arXiv preprint arXiv:2104.05859, 2021.

[27] D. Shah and S. Levine, “Viking: Vision-based kilometer-scale navigation with geographic hints,”
arXiv preprint arXiv:2202.11271, 2022.

[28] X. Meng, N. Ratliff, Y. Xiang, and D. Fox, “Scaling local control to large-scale topological
navigation,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 672–678.

[29] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[30] J. T. Betts, “Survey of numerical methods for trajectory optimization,” Journal of guidance,
control, and dynamics, vol. 21, no. 2, pp. 193–207, 1998.

[31] ——, Practical methods for optimal control and estimation using nonlinear programming.
SIAM, 2010.

[32] D. E. Kirk, Optimal control theory: an introduction. Courier Corporation, 2004.

[33] R. Tedrake, Underactuated Robotics, 2022. [Online]. Available: http://underactuated.mit.edu

[34] P. Abbeel, Advanced Robotics, 2019. [Online]. Available: https://people.eecs.berkeley.edu/
~pabbeel/cs287-fa19/

[35] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, and W. Burgard, Principles of robot
motion: theory, algorithms, and implementations, 2005.

[36] S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45, no. 3, pp. 52–57, 2002.

[37] M. Bujanca, P. Gafton, S. Saeedi, A. Nisbet, B. Bodin, M. F. O’Boyle, A. J. Davison, P. H. Kelly,
G. Riley, B. Lennox et al., “Slambench 3.0: Systematic automated reproducible evaluation
of slam systems for robot vision challenges and scene understanding,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 6351–6358.

[38] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based slam,”
IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31–43, 2010.

[39] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski, “Vizdoom: A doom-based ai
research platform for visual reinforcement learning,” in 2016 IEEE conference on computational
intelligence and games (CIG). IEEE, 2016, pp. 1–8.

[40] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun,
J. Malik et al., “Habitat: A platform for embodied ai research,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 9339–9347.

[41] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl: Datasets for deep data-driven
reinforcement learning,” 2020.

[42] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 30, no. 1, 2016.

[43] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on reinforcement
learning,” in International Conference on Machine Learning. PMLR, 2017, pp. 449–458.

[44] S. Levine, Deep Reinforcement Learning, 2022. [Online]. Available: http://rail.eecs.berkeley.
edu/deeprlcourse/

12

http://underactuated.mit.edu
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19/
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19/
http://rail.eecs.berkeley.edu/deeprlcourse/
http://rail.eecs.berkeley.edu/deeprlcourse/

[45] Y. Chebotar, K. Hausman, Y. Lu, T. Xiao, D. Kalashnikov, J. Varley, A. Irpan, B. Eysenbach,
R. Julian, C. Finn et al., “Actionable models: Unsupervised offline reinforcement learning of
robotic skills,” arXiv preprint arXiv:2104.07749, 2021.

[46] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep rein-
forcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[47] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. Azar, and D. Silver, “Rainbow: Combining improvements in deep reinforcement learning,”
in Thirty-second AAAI conference on artificial intelligence, 2018.

[48] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel et al., “Soft actor-critic algorithms and applications,” arXiv preprint arXiv:1812.05905,
2018.

[49] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” arXiv preprint
arXiv:1511.05952, 2015.

[50] B. F. Skinner, Contingencies of reinforcement: A theoretical analysis. BF Skinner Foundation,
2014, vol. 3.

[51] A. Noë, A. Noë et al., Action in perception, 2004.

[52] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “First return, then explore,”
Nature, vol. 590, no. 7847, pp. 580–586, 2021.

[53] S. Tian, S. Nair, F. Ebert, S. Dasari, B. Eysenbach, C. Finn, and S. Levine, “Model-based visual
planning with self-supervised functional distances,” arXiv preprint arXiv:2012.15373, 2020.

[54] A. Van den Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive
coding,” arXiv e-prints, pp. arXiv–1807, 2018.

[55] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning,” Artificial intelligence, vol. 112, no. 1-2, pp.
181–211, 1999.

[56] G. Konidaris and A. Barto, “Skill discovery in continuous reinforcement learning domains using
skill chaining,” Advances in neural information processing systems, vol. 22, 2009.

[57] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “Lqr-trees: Feedback motion
planning via sums-of-squares verification,” The International Journal of Robotics Research,
vol. 29, no. 8, pp. 1038–1052, 2010.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

Supplementary Material

This document presents additional implementation details, visualizations, and conceptual discussions
that were excluded or briefed due to space limitations in the main paper. The organization mirrors
the sections from the main paper (with the exact same order and numbering), and the exposition
generally maintains a question-answer format. It aims to provide significantly more details, at a
degree of clarity sufficient for re-implementation. As such, we recommend referring to this document
whenever any section in the main paper can benefit from further elaboration. The supplementary
material consists of:

• vizdoom_nav — navigation videos in VizDoom.
• habitat_roxbox_nav — navigation videos in the training apartment Roxbox in Habitat.
• habitat_annawan_nav — navigation videos in the test apartment Annawan in Habitat.
• maze2d_experiments — goal reaching videos in Maze2D.
• planning_vis — videos visualizing the execution of R-RRT and R-RRT*.
• code — source code for PALMER.

Table of Contents

1. Introduction

• Why learn a latent distance metric for nearest neighbor retrieval?
• What does stitching transitions together mean?

2. Perception-Action Loop with Memory Reorganization

2.1. Perceptual Representations that Capture Local Reachability

• What does local reachability mean?

2.2. Representation Learning via Reinforcement Learning

• How are the model components trained, and what are their exact inputs and outputs?
• What do the terms in the contrastive loss-function LQ mean?

2.3. Perceptual Experience Retrieval (PER)

• How do we solve the optimization problem in equation 1 from the main paper?
• What do the retrieved trajectories τM(sc,sg) look like?

2.4. Long-Horizon Planning Through Stitching Trajectory Segments

• How does R-PRM work in detail?
• How does R-RRT work in detail?
• How does R-RRT* work in detail?
• What does optimizing the Bellman error on the roadmap mean?
• What does restitching transitions at arbitrary resolution mean?

2.5. Refining Memory Contents via Forming and Executing Plans

• What does optimizing memory contents mean?
• How does the perception-action loop in PALMER work in detail?

3. Related Work

• What is the main reason why memory-based reasoning over actually observed transitions is
necessary? Why are methods like SPTM or SoRB that solely rely on learning-based distance
estimates are inherently prone to false predictions?

15

• What are the details for our implementations of SoRB and SPTM?

4. Experiments

Setup

• What are the details for the experimental setup in VizDoom?

Validating Perceptual Experience Retrieval (PER)

• What is the exact evaluation process that produced Fig.4 in the main paper?

Robust Distances

• What is the exact evaluation process for the right panel of Fig.5 in the main paper?

Proposed Planning Algorithms

• Why does the policy πM∗ use R-PRM for planning?
• What are the details for the πmpc baseline?

Experiments in Habitat

• What are the details for the experimental setup in Habitat?
• Why does the agent occasionally take random-looking actions in the habitat navigation

trials?

5. Discussion and Future Directions

• How is PALMER related to the "Options Framework (Sutton et al.)" and "Skill-Chaining
(Konidaris et al.)"?

• How is PALMER related to "LQR-Trees (Tedrake et al.)?

1 Introduction

Why learn a latent distance metric for nearest neighbor retrieval: In a low-dimensional state space
such as 3D positions, L2 distance (i.e., euclidean distance) directly correlates with local physical-
reachability (i.e., we emphasize local, because euclidian distances still do not match geodesic
distances globally). Therefore in such state-spaces, grouping together two nearby states and treating
them as the same single state for downstream global planning should still result in a feasible planned
trajectory. By feasible, we mean that the gaps and approximations introduced by state grouping are
functionally inconsequential and can be handled reasonably well by a local policy tracking the global
planned trajectory. This property doesn’t hold in high-dimensional state spaces such as images, since
the L2 distance doesn’t correlate with physical reachability. The main purpose of fϕ is to project such
high-dimensional spaces into a low-dimensional representation space where this property holds, so
that nearby states can be fused together to make sampling-based planning computationally tractable.

Figure 9: Visualization of stitching together trajectories. If an agent has previous experience of separately going
through segments (A,B) and (C,D), it should be able to go from sc to sg through the segments (A,D).

What does stitching transitions together mean: As shown in Fig9, if there are two separate sequences
of transitions in an offline memory buffer that traverse segments (A,B) and (C,D), an agent should
be capable of going from sc to sg through the segments (A,D) event if such a direct path of transitions

16

was never actually observed. Traditional deep Q-learning methods achieve this by combining and
propagating value estimates through TD-updates (i.e., argmaxaQ(s1, a, sg) points to segment D
after TD updates over the path (C,D), therefore the argmax policy would follow the path (A,D)
when going from sc to sg. [41] provides a further discussion). In our approach, this is achieved by
setting edge distances for (A,B,C,D) in a planning graph through perceptual experience retrieval,
and then performing a shortest path computation to retrieve the path (A,D).

2 Perception-Action Loop with Memory Reorganization

2.1 Perceptual Representations that Capture Local Reachability

What does local reachability mean: At a high-level (and for the special case of image-based naviga-
tion) what the term ‘local reachability’ intends to convey is that if two images I1 and I2 are from
physically close positions, dϕ = |fϕ(I1)− fϕ(I2)| should be small. This in turn provides a metric for
grouping together states that is better than the L2 distance in image space, which has no correlation
with physical reachability. Such a metric is necessary to make search and sampling-based planning
planning over the memory buffer computationally tractable. This learned metric dϕ serves the exact
same purpose as the hand-crafted image compression criterion employed in [52] to initialize cells
from states.

2.2 Representation Learning via Reinforcement Learning

Figure 10: Visualization of the model architecture, reproduced here for ease of reference.

How are the model components trained, and what are their exact inputs and outputs: More detailed
descriptions for all model components are given below (Fig.10 presents a visualization):

• The architecture and training of Q(st, at, sg) is completely decoupled from the other components.
It consists of cascaded convolutional and fully-connected layers with batch normalization and
ReLU activations between each layer. It takes as input the concatenated images for current and
goal states (i.e., shape B × C ×H ×W), and outputs a vector of Q-values for each action (i.e.,
shape B × num_actions). It is trained through offline DDQN [42] with hindsight goal-relabelling
[15]. We first sample t ∼ Uniform(0, dataset_size) and T ∼ Geom(p), and then retrieve from
the replay buffer a transition and a goal state as (st, at, st+1, sg := st+T). We then minimize the
TD error [Qθ(st, at, sg)− (1st+1=sg + γ1st+1 ̸=sg maxa Qθ−(st+1, a, sg))]

2, as in [53].

• The perceptual backbone fϕ(s) uses a standard Resnet-18 architecture. It takes as input the
images for a given state (i.e., B × C ×H ×W), and outputs a low-dimensional representation
vector z = fϕ(s) (i.e., shape B ×D). All other components take as input these low-dimensional
representations, rather than operating over images.

• pfwd(z
′
t+1 | zt, at), πinv(a

′
t | zt, zg), and pt(T

′ | zt, zg) all consist of fully-connected layers with
ReLU activations. To train them, we first sample t ∼ Uniform(0, dataset_size). We then
sample T according to T ∼ Uniform(0, Tmax) or T ∼ Uniform(Tmax, dataset_size − t),
half the time from the former distribution, half the time from the latter. We retrieve from the
replay buffer a transition and a goal state as (st, at, st+1, sg := st+T), and project them into
low dimensional representations (zt, at, zt+1, zg) using fϕ. These are concatenated and passed
to models pfwd(z

′
t+1 | zt, at), πinv(a

′
t | zt, zg), pt(T ′ | zt, zg) in a way compatible with their

17

arguments. pfwd outputs the mean for the predicted next state distribution (i.e., shape B ×D), and
is trained using the MSE loss Lfwd with zt+1 as the target. πinv outputs a vector of probabilities
over actions (i.e., shape B × num_actions), and is trained with the cross-entropy loss Linv with
at as the target. pt also outputs a discrete probability distribution over [0, Tmax] that predicts the
distribution of time-steps to reach the goal, where the last bin Tmax serves as a catch-all for all
values above it. It is trained using the cross entropy loss LT , with T as the target. As mentioned in
the main paper, all components fϕ, pfwd(z

′
t+1 | zt, at), πinv(a

′
t | zt, zg), pt(T ′ | zt, zg) are trained

jointly, with an additional loss function LQ that regularizes fϕ.

What do the terms in the contrastive loss-function LQ mean: The loss function LQ(st, sg) =

lhinge(dϕ(st, sg)−dp) 1dQ(st,sg)≤cQ+lhinge(dp−dϕ(st, sg)) 1dQ(st,sg)≥cQ consists of two penalty
terms lhinge(dϕ(st, sg)− dp) (i.e., only active when dϕ ≥ dp) and lhinge(dp − dϕ(st, sg)) (i.e., only
active when dϕ ≤ dp). These penalty terms are gated through two complementary indicator functions
1dQ(st,sg)≤cQ and 1dQ(st,sg)≥cQ . This essentially means that for LQ to be zero, dϕ ≤ dp should
hold (i.e., perceptual representations are close) if and only if dQ(st, sg) ≤ cQ holds (i.e., states are
physically close). The reason for employing such a conservative switching mechanism with a hinge
loss in LQ (i.e., rather than a continuous penalty term as in [21, 54]) is because Q-value estimates are
quite inaccurate (especially when sc and sg are far apart), and their exact value is generally unreliable
(i.e., they can indicate whether two-states are close sufficiently well, but cannot robustly answer how
close they are). To pick the hyperparameter cQ, we compute the average Q-value between states in
the replay buffer that were observed to be within one-step proximity, and use a fraction of this value
to as a conservative estimate. While conceptually the choice for the hyperparameter dp is arbitrary,
we heuristically pick it by examining the average dϕ distance between subsequent states in the replay
buffer, obtained from a preliminary fϕ backbone trained without LQ.

2.3 Perceptual Experience Retrieval (PER)

How do we solve the optimization problem in equation 1 from the main paper: Our experiments use
−R(τ) = len(τ). We first compute the perceptual representations z for all states in the replay
buffer, and stack them into a tensor block of shape (dataset_size,D). Given sc and sg, we search
this tensor with vectorized masking operations to retrieve a set of neighboring states N(sc, dp) and
N(sg, dp) (i.e., sets of states within a perceptual distance threshold dp of sc and sg), to address
cons.4. We sort the resulting pairs of states (si, sj) ∈ N(sc, dp)×N(sg, dp) in terms of j − i, and
filter these pairs using cons.5. We then pick the first (i.e., closest) pair, and return all the states with
indices between i, j from the replay buffer as the resulting trajectory τM(sc,sg). The important thing
to emphasize about all of these operations is that they can be trivially vectorized, and therefore the
optimization problem in eq.3-5 can be solved in less time than a forward pass of fϕ.

Figure 11: Visualization of retrieved trajectories, with different perceptual distance threshold. Query states sc
and sg are represented as white squares with a cross in the center, while the start and end points of the retrieved
trajectory τM(sc,sg) are denoted with a black square and a yellow square with a diagonal dash respectively.

What do the retrieved trajectories τM(sc,sg) look like: As the perceptual distance threshold for dϕ
increases, the physical radii spanned by the nearest neighbor sets N(sc, dp) and N(sg, dp) increase,
as shown in Fig.11. As a result, constraint 4 in the PER equation gets looser, more trajectories satisfy
constraints 4 and 5 (because their start and end points are allowed to deviate further from the query
pair sc, sg), and therefore the optimization in equation 3 returns a shorter trajectory τM(sc,sg).

18

2.4 Long-Horizon Planning Through Stitching Trajectory Segments

Algorithm 3 Classic PRM (Roadmap Construction)

1: V ← {SampleFreei}i=1,...,num_vertices; E ← ∅ ▷ Initialize vertices and edges
2: for each si ∈ V do
3: U ← Near(V, si, r) \ {si}
4: for each sj ∈ U do ▷ Draw lines as edges
5: if CollisionFree(si, sj) then E ← E ∪ {(si, sj), (sj , si)}

return G = (V,E)

Algorithm 4 Classic PRM (Shortest-Path Queries Over the Roadmap)

1: Input: sc, sg, G = (V,E),R(τ), fϕ,M
2: for each si ∈ V do ▷ Insert sc and sg into the PRM graph
3: if CollisionFree(sc, si) then
4: E ← E ∪ {(sc, si), (si, sc)}
5: if CollisionFree(si, sg) then
6: E ← E ∪ {(si, sg), (sg, si)}

return {sj} ← ShortestPath(sc, sg, G) ▷ Shortest path through graph search

Algorithm 5 R-PRM (Roadmap Construction)

1: Input: fϕ,M
2: V ← {SampleFreei}i=1,...,num_vertices; E ← ∅ ▷ Initialize vertices and edges
3: for each si ∈ V do
4: U ← Near(V, si, r) \ {si}
5: for each sj ∈ U do ▷ Place PER trajectories in edges
6: E ← E ∪ {(si, sj) : τedge = τM(si,sj), dedge = −R(τM(si,sj))}

return G = (V,E)

How does R-PRM work in detail: Alg.3, 4 give step-by-step descriptions for the classical PRM algo-
rithm (adapted from [25]), while Alg.5, 6 describe our new definitions for R-PRM. It can be seen that
there are two main differences:

• In R-PRM, whenever an edge is created, a trajectory τM(sc,si) is retrieved through perceptual
experience retrieval and stored in a field τedge, while its reward −R(τM(sc,si)) is stored in a
different field dedge.

• In PRM the length and cost of a line segment are the same (i.e., euclidian distance), whereas in
R-PRM the length of a trajectory len(τM(sc,si)) and its reward−R(τM(sc,si)) are decoupled. This
means that a shortest path query in R-PRM returns a sequence of nodes and edges that optimize
the reward functionR. An additional step in R-PRM is that at the end of the shortest-path query,
all trajectories τedge = τM(si−1,si) stored in the returned edges are concatenated into a single
trajectory τM*(sc,sg) = τstitched.

How does R-RRT work in detail: Alg.7 gives a step-by-step description for the classical RRT algo-
rithm (adapted from [25]), while Alg.8 describes our new definition for R-RRT. In addition to the
two previous differences between PRM and R-PRM, there is one additional difference between RRT
and R-RRT. In RRT, there is a steering sub-routine that draws a line segment of length r starting
from snearest and extending towards srand, to create a new vertex snew. In R-RRT, this is replaced
by retrieving a trajectory τM(snearest,srand) starting from snearest and ending at srand, and its r ’th
state is used to create the new vertex snew.

How does R-RRT* work in detail: Alg.9 gives a step-by-step description for the classical RRT*
algorithm (adapted from [25]), while Alg.10 describes our new definition for R-RRT*. R-RRT*
almost exactly maintains the tree rewiring machinery employed in RRT*, the only difference being

19

Algorithm 6 R-PRM (Trajectory Restitching Given the Constructed Roadmap)

1: Input: sc, sg, G = (V,E),R(τ), fϕ,M
2: for each si ∈ V do ▷ Insert sc and sg into the PRM graph
3: if len(τM(sc,si)) ≤ r then ▷ Place PER trajectories in edges
4: E ← E ∪ {(sc, si) : τedge = τM(sc,si), dedge = −R(τM(sc,si))}
5: if len(τM(si,sg)) ≤ r then
6: E ← E ∪ {(si, sg) : τedge = τM(si,sg), dedge = −R(τM(si,sg))}

7: τstitched ← ∅
8: {sj} ← ShortestPath(sc, sg, G,R(τ)) ▷ Trajectory stitching by dynamic programming
9: for 0 < i < |{sj}| do ▷ Concatenate PER trajectories along the shortest path

10: τstitched ← τstitched ◦ τM(si−1,si)

return τM*(sc,sg) = τstitched

Algorithm 7 Classic RRT

1: V ← {sinit}; E ← ∅ ▷ Initialize vertices and edges
2: for i = 1, ..., n do
3: srand ← SampleFreei ▷ Sample random vertex
4: snearest ← Nearest(V, srand) ▷ Find the nearest vertex in V
5: snew ← Steer(snearest, srand, r) ▷ Draw a line segment of length r
6: if CollisionFree(snearest, snew) then
7: V ← V ∪ {snew} ; E ← E ∪ {(snearest, snew), (snew, snearest)}

return G = (V,E)

that the line costs (i.e., euclidian distance) are replaced with −R(τM(si,sj)) (i.e., in addition to the
previous three differences from R-PRM and R-RRT).

What does optimizing the Bellman error on the roadmap mean: Dynamic programming based graph-
search algorithms like Dijkstra or (discrete) value-iteration generally employ a cost caching mech-
anism to iteratively update cost-to-come values, and these updates reduce Bellman error (i.e., the
difference between the cost-to-come values before and after the update) during forward-search [29].
R-PRM uses Dijkstra for shortest-path search, while R-RRT* employs the same dynamic program-
ming based tree-rewiring mechanism as the original RRT*, therefore both algorithms are optimizing
the Bellman error between the vertices of their graphs through dynamic programming.

What does restitching transitions at arbitrary resolution mean: The retrospective-planning algo-
rithms R-PRM, R-RRT, R-RRT* are sampling based. This means that if two consequent states
st and st+1 are retrieved during their SampleFreei routines, then these algorithms will set an
edge using τM(st,st+1), which is simply the single transition (st, at, st+1). Therefore, given enough
samples, these algorithms can restitch trajectories down to the level of individual transitions.

2.5 Refining Memory Contents via Forming and Executing Plans

What does optimizing memory contents mean: A replay bufferM is a collection of trajectories. Op-
timizing its contents means adding trajectories toM that achieve higher total reward.

How does the perception-action loop in PALMER work in detail: Alg.11 gives a step-by-step de-
scription of the overall perception-action loop implemented in PALMER. What PALMER does is
essentially bridging any auxiliary exploration method with any auxiliary exploitation method,
by reorganizing exploration experience inM into τM*(sc,sg) that can be used for exploitation. The
particular way in which the trajectories τM*(sc,sg) can be executed for exploitation has a great deal of
flexibility, for example: all actions in τM*(sc,sg) can be executed sequentially in an open-loop manner,
the first actions of τM*(sc,sg) generated at each timestep can be executed in a model predictive control
(MPC) manner, states in τM*(sc,sg) can be tracked by an auxiliary local feedback controller, or the
entirety of τM*(sc,sg) can be used to initialize a separate trajectory optimization method.

20

Algorithm 8 R-RRT

1: V ← {sinit}; E ← ∅ ▷ Initialize vertices and edges
2: for i = 1, ..., n do
3: srand ← SampleFreei ▷ Sample random vertex
4: snearest ← Nearest(V, srand) ▷ Find the nearest vertex in V
5: snew ← τM(snearest,srand),r ▷ Get the r ’th state in τM(snearest,srand)

6: if len(τM(snearest,snew)) ≤ r then
7: V ← V ∪ {snew}
8: E ← E ∪ {(snearest, snew) : τedge = τM(snearest,snew),
9: dedge = −R(τM(snearest,snew))}

return G = (V,E)

Algorithm 9 Classic RRT*

1: V ← {sinit}; E ← ∅ ▷ Initialize vertices and edges
2: for i = 1, ..., n do
3: srand ← SampleFreei ▷ Sample random vertex
4: snearest ← Nearest(V, srand) ▷ Find the nearest vertex in V
5: snew ← Steer(snearest, srand, r) ▷ Draw a line segment of length r
6:
7: if CollisionFree(snearest, snew) then
8: Snear ← Near(V, snew, r)
9: V ← V ∪ {snew}

10: smin ← snearest
11: cmin ← Cost(snearest) + Cost(Line(snearest, snew))
12:
13: for each snear ∈ Xnear do ▷ Connect along a minimum-cost path
14: cnear ← Cost(snear) + Cost(Line(snear, snew))
15: if CollisionFree(snear, snew) and cnear ≤ cmin then
16: smin ← snear ; cmin ← cnear
17: E ← E ∪ {(smin, snew)}
18:
19: for each snear ∈ Xnear do ▷ Rewire the tree
20: cnear,new ← Cost(snew) + Cost(Line(snew, snear))
21: if CollisionFree(snew, snear) and cnear,new ≤ cnear then
22: sparent ← Parent(snear)
23: E ← (E\{(sparent, snear)} ∪ {snew, snear})

return G = (V,E)

3 Related Work

What is the main reason why memory-based reasoning over actually-observed transitions is neces-
sary? Why are methods like SPTM or SoRB that solely rely on learning-based distance estimates
are inherently prone to false predictions: By definition, states that are far apart from each other
in-terms of physical reachability are rarely observed together in an experiential learning framework
(e.g., within the same RL episode, or within close by time-steps during random exploration). There-
fore, for any learning-based prediction model that is conditioned on current-goal state pairs (e.g.,
Q(st, a, sg), πinv(a

′|st, sg), pt(T
′|st, sg)), if it is trained solely on the observed distribution of

experiential data, far apart states will be out of distribution (i.e., they have a low probability of being
sampled from the experiential data distribution, therefore they are underrepresented in the replay
buffer). This means that predictions for such far apart states will inevitably be inaccurate, unless a
hard-negative sampling mechanism is implemented to explicitly push their reachability-estimates
lower. The problem with this is that there is no inherent signal solely contained in perceptual input
(e.g., images) that can guide the resampling process in a way that is generally applicable to all tasks.

21

Algorithm 10 R-RRT*

1: V ← {sinit}; E ← ∅ ▷ Initialize vertices and edges
2: for i = 1, ..., n do
3: srand ← SampleFreei ▷ Sample random vertex
4: snearest ← Nearest(V, srand) ▷ Find the nearest vertex in V
5: snew ← τM(snearest,srand),r ▷ Get the r ’th state in τM(snearest,srand)

6:
7: if len(τM(snearest,snew)) ≤ r then
8: Snear ← Near(V, snew, r)
9: V ← V ∪ {snew}

10: smin ← snearest
11: cmin ← Cost(snearest) +−R(τM(snearest,snew))
12:
13: for each snear ∈ Xnear do ▷ Connect along a minimum-cost path
14: cnear ← Cost(snear) +−R(τM(snear,snew))
15: if len(τM(snear,snew)) ≤ r and cnear ≤ cmin then
16: smin ← snear ; cmin ← cnear
17: E ← E ∪ {(smin, snew) : τedge = τM(smin,snew), dedge = −R(τM(smin,snew))}
18:
19: for each snear ∈ Xnear do ▷ Rewire the tree
20: cnear,new ← Cost(snew) +−R(τM(snew,snear))
21: if len(τM(snew,snear)) ≤ r and cnear,new ≤ cnear then
22: sparent ← Parent(snear)
23: E ← (E\{(sparent, snear)} ∪ {snew, snear})

return G = (V,E)

For example, [53] employs a hard-negative sampling mechanism for a manipulation task using joint
pose labels for guidance, but such a mechanism has two bottlenecks: i) it is specific to their particular
manipulation task, ii) it assumes auxiliary labels. Similarly, the temporally consistent localization
mechanism used in SPTM is essentially a heuristic fix specific to navigation. For the case of SoRB,
there is no inherent mechanism in distributional RL that addresses this out-of-distribution issue either.
While employing an ensemble of Q-functions could potentially capture the epistemic uncertainty for
out-of-distribution pairs to directly address this problem, we used an ensemble of Q-functions in our
implementation of SoRB and empirically observed that it was insufficient. A similar conclusion can
be drawn from the Fig.8 of the original SoRB paper [12], as the bulk of the performance increase
appears to be due to distributional RL, and ensembles only provide a moderate benefit.

All of these considerations highlight the importance of memory as a robustification mechanism.
To summarize the discussions from above, there are two main reasons that cause false reachability
predictions: i) there is no robust and general signal solely contained in the isolated instances of
perceptual input (sc, sg) (i.e., without the trajectory of states in between that connect them) that can
identify whether two states are physically far apart, ii) both physically close and far apart states can
occur with a long temporal distance in between. Therefore, an agent needs to rely on memory: in
order to identify whether two states are close or not, it should try to remember if it ever actually
observed those two states close-by in a segment of past experience.

What are the details for our implementations of SoRB and SPTM: Tha main difference of our SPTM
implementation is that it doesn’t employ temporally consistent localization and adaptive waypoint
selection. The main differences of our SoRB implementation are: i) we use an ensemble of Q-
functions, but they are trained with DDQN rather than distributional RL, ii) we train the Q-function
on offlline random-walk data, rather than an online episodic training setup with resets and a reward
oracle as employed in the original paper. We acknowledge and emphasize that for SoRB, these
differences are the most likely reason for the lower performance level we observed in our evaluations
compared to the original paper, as they inevitably reduce the accuracy of Q-values. We however note
that our method also employs the same Q-values, and generally these implementation differences in
the baselines were chosen to facilitate a clear understanding of our approach without confounders,

22

Algorithm 11 PALMER: Perception-Action Loop with Memory Retrieval

1: Input: R(τ)
2: fϕ.init(), Q.init(),M← ∅ ▷ Initialize policy parameters
3: while t ≤ max_timestep do

4: while i ≤ num_exploration_steps do ▷ Exploration
5: i) Using [any suitable method]: explore the environment

to obtain an exploration trajectory τnew
6: ii) Using [τnew]: updateM ▷ Memory expansion

7: while i ≤ num_updates do
8: Using [M]: update Q(st, at, sg) ▷ Train value function
9: Using [M and Q(st, at, sg)]: update fϕ(st, sg) ▷ Train perception model

10: while i ≤ num_exploitation_steps do ▷ Exploitation
11: i) Using [M]: sample a random goal sg ∼M
12: ii) Using [fϕ(sc, sg) andR(τ)]: generate τM*(sc,sg)

13: iii) Using [any suitable method]: execute τM*(sc,sg)

to obtain a real trajectory τreal
14: iv) Using [τreal]: updateM ▷ Memory optimization

because: i) they do not directly address the root cause of the false prediction problem (as discussed
above), ii) one of the main benefits of our method is that it operates over arbitrary offline data without
any resets or reward oracles (and it uses DDQN to train the related Q-function).

4 Experiments

Setup

Figure 12: Visualization of the map used in VizDoom experiments. Further video visuals of image-based
navigation can be found in the folder vizdoom_nav provided in the supplementary alongside this document.

What are the details for the experimental setup in VizDoom: As shown in Fig.12, states solely con-
sist of four images INorth/East/South/West that form a panorama (i.e., 4×3×160×120 dimensions),
and actions move the agent North/South/East/West by a fixed distance ∆. The geodesic distances
scale approximately by a factor of×3 compared to euclidian distances (e.g., If a goal has an euclidian
distance of 14∆, it takes approximately 42 timesteps for an optimal policy to reach it). The map
contains many long-thin column-like obstructions (e.g., torches, pillars, trees), as we found that
image-based navigation policies are prone to getting stuck in such obstacles. These obstacles have
dynamically changing appearances (e.g., flickering flames on torches, glowing lights on pillars), and
can completely block the field of view of the agent after a collision (as shown in IEast in Fig.12).
The replay bufferM consists of 300k images obtained from a uniform random walk exploring the
map in a single continuous sequence of actions, without resets and rewards.

23

Validating Perceptual Experience Retrieval (PER)

What is the exact evaluation process that produced Fig.4 in the main paper: For every integer value
n ∈ [0, 14], we randomly sample 1000 pairs of start and goal-states in a way that the euclidian
distance between them lies within n×∆ and (n+ 1)×∆ through rejection sampling, and a policy
is considered successful if it can get within ∆ proximity of the goal-state.

Robust Distances

What is the exact evaluation process for the right panel of Fig.5 in the main paper: To produce the
roadmap visualizaitons, we randomly sample 250 states from the replay buffer and set the edges
between them by thresholding the distance estimates from all methods. Thresholds were calibrated
individually and by hand for each baseline, by picking the threshold with the lowest number of false
edges until a further reduction in the threshold resulted in splitting the roadmap into a large number
of isolated subgraphs (i.e., therefore making it impossible to use it for global planning).

Proposed Planning Algorithms

Why does the policy πM∗ use R-PRM for planning: PRM and R-PRM are multi-query methods [25],
meaning that the full roadmap only needs to be constructed once. For any query pair of current-
goal states (sc, sg), the same roadmap can be reutilized by inserting (sc, sg) in the roadmap and
performing a shortest path query. In contrast, RRT and RRT* require recreating a full roadmap for
every new query pair. Since πM∗ replans at each timestep with a different current state st, PRM based
approaches are computationally much cheaper. We also note that planning graphs for all methods in
this experiment contain 500 vertices.

What are the details for the πmpc baseline: The πmpc policy uses the pfwd model to obtain simulated
rollouts, and uses the pt model to rank those rollouts in terms of how close they get to the goal.
This allows an MPC optimization loop that picks and implements the first action from the most
successful simulated rollout. As previously discussed above, the main bottleneck for SPTM and
SoRB is the difficulty of estimating reachability metrics solely using the two states sc, sg without any
consideration of the states in between. Simulated rollouts in πmpc naturally address this problem by
generating and evaluating entire trajectories. The main bottleneck for πmpc is that the accuracy of
state predictions in simulated rollouts from pfwd degrade with the rollout length.

Experiments in Habitat

Figure 13: Visualization of the apartments used in Habitat experiments. Further video visuals of image-based
navigation can be found in the folders habitat_roxbox_nav and habitat_annawan_nav provided in the
supplementary alongside this document.

What are the details for the experimental setup in Habitat: As shown in Fig.13, states solely con-
sist of a single 150 FOV image (i.e., 3 × 256 × 256 dimensions). There are 3 actions:
{turn_left_30_deg, turn_right_30_deg,move_forward_∆}. We run evaluations on two ran-
domly picked apartments: Roxbox, and Annawan. In both apartments, we collect a replay bufferM
that consists of 150k images obtained from a uniform random walk exploring the map in a single

24

continuous sequence of actions, without resets and rewards. We use only the memory buffer from
Roxbox to train the perception model fϕ, and use this same model to do perceptual experience
retrieval and trajectory stitching on replay buffers from both apartments. We have observed that the
latent distances from fϕ generalize well, and can directly allow perceptual experience retrieval and
trajectory stitching without any fine-tuning on the images from the new test apartment.

Why does the agent occasionally take random-looking actions in the habitat navigation trials: This
is due to a combination of two main factors. First, our MPC loop replans from scratch at each timestep
using Algorithm.6. This frequent replanning has a destabilizing effect on the control loop, similar to
employing a large derivative action in a PID controller (i.e., a strong anticipatory term causes frequent
switches in the actions). This first factor is exacerbated by the second main factor: the poor perfor-
mance of argmaxa Q(st, a, sg). This is most likely due to the difficulty of offline RL training with
hindsight relabelling over random-walk data of only 150k timesteps obtained with a much more chal-
lenging non-cartesian action space {turn_left_30_deg, turn_right_30_deg,move_forward_∆}.
The restitched trajectories τM*(st,sg),s,1) produced by R-PRM at each time-step are converted to
actions by following their first state τM*(st,sg),s,1 using argmaxa Q(st, a, τM*(st,sg),s,1), and inac-
curate Q-values occasionally cause random-looking actions.

There are multiple ways to counter this. The most direct way is to train a better Q-function. Our
current Q-function is trained in a particularly challenging setting, as: i) it is trained on entirely offline
data with hindsight goal relabelling, ii) this data is collected through uniformly random actions, and
iii) it consists of only 150k environment steps. A second way is to instead counter the large derivative
action by reducing the replanning rate and introducing a momentum mechanism to the controller.
For example, we can replan through R-PRM only every n’th timestep (i.e., hence reducing the
replanning rate), and act according to argmaxa Q(st, a, τM*(st,sg),s,n) for the timesteps inbetween
(i.e., hence introducing momentum to the controls). We couldn’t get this fix to work well, because
the Q-values are only accurate up to states that are ∼ 2×∆ distance away (hence acting according
to argmaxa Q(st, a, τM*(st,sg),s,n) isn’t possible for n ≥ 2 in our case). We note however that
our method can still navigate from any point to any point in a challenging 3D reconstruction of a
real-world apartment in Habitat using poor Q-value estimates, highlighting the robustness introduced
by memory-based planning.

5 Discussion and Future Directions

How is PALMER related to the "Options Framework (Sutton et al.)" and "Skill-Chaining (Konidaris
et al.)": The idea of restitching (i.e., chaining) transition sequences from a replay buffer has direct
connections to the options framework [55] and skill-chaining [56]. Essentially, PALMER can be
thought of as a framework for converting every possible sequence of transitions τ ∈M in memory
into an option o = {πo, Io, βo}, where the option policy πo is implemented by simply executing
all the actions in τ in an open-loop manner, the initiation set is Io = {s ∈ S : dϕ(s, τs,0) ≤ dp)},
and the termination condition is βo = {s ∈ S : dϕ(s, τs,−1) ≤ dp)}. Therefore, PALMER can be
interpreted as a skill-chaining algorithm that converts unstructured transitions in a replay buffer into a
set of executable options to be chained.

How is PALMER related to "LQR-Trees (Tedrake et al.)": A central idea in PALMER is repurposing
the edge creation subroutines of sampling-based planning algorithms so that whenever an edge is
created some additional processing is done to connect the endpoints (i.e., particularly, perceptual
experience retrieval in our case). This approach is directly inspired by the method of LQR-Trees [57],
which instead creates a trajectory stabilizing LQR controller to connect the endpoints of each edge.
This results in a roadmap of local controllers, rather then a roadmap of memories as in PALMER.

25

	Introduction
	Perception-Action Loop with Memory RetrievalMost sub-sections have a corresponding section in the supplementary for further elaboration.
	Perceptual Representations that Capture Local Reachability
	Representation Learning via Reinforcement Learning
	Perceptual Experience Retrieval (PER)
	Long-Horizon Planning Through Stitching Trajectory Segments
	Refining Memory Contents via Forming and Executing Plans

	Related work
	ExperimentsAll experiments have a corresponding section in the supplementary providing further implementation details.
	Experiments in Vizdoom
	Experiments in Habitat
	Experiments in Maze2D

	Discussion and Future Directions
	Conclusion and Limitations

